miércoles, 17 de septiembre de 2014

Parametros de un receptor AM

Hay dos tipos básicos de receptores de radio: coherentes y no coherentes Con un receptor coherente o sincrónico, las frecuencias generadas en el receptor y utilizadas para la demodulación se sincronizan para oscilar a frecuencias generadas en el transmisor (el receptor debe tener algún medio de recuperar la portadora recibida y de sincronizarse con ella) Con receptores no coherentes o asíncronos, o no se generan frecuencias en el receptor o las frecuencias utilizadas para la demodulación son completamente dependientes de la frecuencia de la portadora del transmisor. La detección no coherente frecuentemente se llama detección de envolvente, porque la información se recupera a partir de la forma de onda recibida detectando la forma de la envolvente modulada. Los receptores descritos en este capítulo son no coherentes.

Receptor sintonizado de radiofrecuencia

El receptor sintonizado a radiofrecuencia (TRF) fue uno de los primeros tipos de receptores de AM y se utilizó extensamente hasta mediados de los años cuarenta. El TRF reemplazó a los receptores anteriores de tipo súper regenerativo y de cristal, y lo más probable es que todavía sea el diseño más sencillo disponible. Se muestra en la figura 4-4 un diagrama a bloques para el TRF. Un TRF es esencialmente un receptor, de tres etapas, que incluye una etapa de RF, una etapa de detector y una etapa de audio. Por lo general, se requieren de dos o tres amplificadores de RF para filtrar y desarrollar suficiente amplitud de las señales, para manejar la etapa de detector. El detector convierte directamente las señales de RF a banda base y la etapa de audio amplifica las señales de información a un nivel donde se puedan utilizar. Los receptores TRF son ventajosos para los receptores diseñados para la operación de un solo canal por su sencillez y alta sensitividad. (Un receptor de un solo canal tiene una frecuencia de operación fija y, por lo tanto, puede recibir solamente una banda específica de frecuencias que son únicas, para las transmisiones de una sola estación.)

Sintonizar un TRF introduce cuatro desventajas que limitan su utilidad sólo a aplicaciones para una sola estación. La desventaja principal de un TRF es que su selectividad (ancho de banda) varía cuando se sintoniza sobre un rango amplio de frecuencias de entrada. El ancho de banda del filtro de entrada de RF varía con la frecuencia central del circuito sintonizado. Esto causa un fenómeno llamado efecto piel (skin) En radio frecuencias, el flujo de corriente se limita al área más lejana del conductor y entre más alta sea la frecuencia, menor es el área. Por lo tanto, en radiofrecuencias, la resistencia del conductor aumenta con la frecuencia. En consecuencia, el Q del circuito tanque (XL/R) permanece relativamente constante sobre un amplio rango de frecuencias y por lo tanto, el ancho de banda (f/Q) aumenta con la frecuencia. Como resultado, la selectividad del filtro de entrada, cambia sobre cualquier rango apreciable de frecuencias entradas. Si el ancho de banda del filtro de entrada se establece en el valor deseado, para señales de RF de banda baja, será excesivo para las señales de banda alta y posiblemente cause interferencia al canal adyacente. La segunda desventaja de los receptores TRF es la inestabilidad debido al gran número de amplificadores de RF que se sintonizan a la misma frecuencia central. Cuando se utilizan amplificadores de múltiples etapas de alta ganancia, la posibilidad de que una señal de realimentación haga que la etapa de RF empiece a oscilar es bastante alta. Este problema se puede reducir, en parte, sintonizando cada amplificador de RF a una frecuencia diferente, ya sea ligeramente arriba o ligeramente abajo de la frecuencia central. Esta técnica se llama sintonización en cascada. Los amplificadores de RF con sintonización en cascada tienen una ganancia menor que los amplificadores sintonizados en la frecuencia central.

La tercera desventaja de los receptores TRF es que su ganancia no es uniforme en un rango muy amplio de frecuencias. Esto se debe a las relaciones L/C no uniformes de los circuitos tanque acoplados con transformador en los amplificadores de RF (o sea, que la relación de la inductancia a la capacidad, en un amplificador sintonizado, no es la misma que la de los otros amplificadores sintonizados)

La cuarta desventaja del TRF es que requiere de sintonización multietapas. Para cambiar las estaciones, cada filtro de RF debe sintonizarse simultáneamente a la nueva banda de frecuencia, de preferencia con un solo ajuste. Esto requiere de exactamente las mismas características para cada circuito sintonizado que, por supuesto, es imposible de lograr. Como se podrá imaginar, este problema es aún
Más severo, cuando se utiliza la sintonización en cascada.


EJEMPLO 4-3

Para un receptor de banda de radiodifusión comercial de AM (535 a 1605 kHz) con un factor Q del filtro de entrada de 54, determine el ancho de banda en el punto alto y bajo del espectro de RF.

Solución

El ancho de banda en el punto de baja frecuencia del espectro de AM Está centrado alrededor de una frecuencia de portadora de 540 kHz y es


Que es obviamente demasiado selectivo (angosto) porque bloquearía aproximadamente dos tercios del ancho de banda de la información.

Receptor superheterodino

En 1918 Edwin H. Armstrong (1890-1954) inventó el receptor heterodino o superhet y aún tiene amplio uso, en muchas variantes. La selectividad no uniforme del TRF condujo al desarrollo del receptor superheterodino cerca del  final de la Primera Guerra Mundial. Aunque la calidad del receptor superheterodino ha mejorado enormemente, desde su diseño original, su configuración básica no ha cambiado mucho y aún se utiliza actualmente, para una gran variedad de servicios de radio comunicaciones. El receptor superheterodino continúa utilizándose, debido a que sus características de ganancia, selectividad y sensitividad son superiores a las otras configuraciones de receptores. Heterodino significa mezclar dos frecuencias juntas en un dispositivo no lineal o trasladar una frecuencia a otra utilizando mezclas no lineales. Un diagrama en bloques de un receptor superheterodino no coherente se muestra en la figura 4-5. Esencialmente, hay cinco secciones para un receptor superheterodino: la sección de RF, la sección de mezclador/convertidor, la sección de IF, la sección de detector de audio y la sección de amplificador de audio.


Sección de RF

La sección de RF generalmente consiste de un preselector y una etapa de amplificador. Pueden ser circuitos separados o un solo circuito combinado. El preselector es un filtro pasa-bandas de sintonización amplia con una frecuencia central ajustable, que se sintoniza a la frecuencia portadora deseada.

El propósito principal del preselector es proporcionar suficiente limitación inicial de bandas para evitar que una frecuencia específica de radio indeseada, llamada frecuencia imagen, entre al receptor (se explica posteriormente en este capítulo la frecuencia imagen).

El preselector también reduce el ancho de banda de ruido del receptor y proporciona la etapa inicial, para reducir el ancho de banda general del receptor al ancho de banda mínimo requerido para pasar las señales de información. El amplificador de RF determina la sensitividad (o sensibilidad) del receptor (o sea, coloca el umbral de la señal).






No hay comentarios:

Publicar un comentario